Terminale ES – Fonctions exponentielles – QCM – Corrigé

1) On sait que les fonctions exponentielles de bases q, q>0, sont définies sur \mathbb{R} .

En particulier, la fonction exponentielle de base 0,95, $x \mapsto 0.95^x$, est définie sur \mathbb{R} .

Cela signifie que 0.95^x existe pour tout $x \in \mathbb{R}$.

Et si 0.95^x existe pour tout $x \in \mathbb{R}$, 27×0.95^x aussi.

La fonction $x \mapsto 27 \times 0.95^x$ est donc aussi, a priori, définie sur \mathbb{R} , sauf si on décide d'en restreindre l'étude sur une partie de \mathbb{R} , comme $]0;+\infty[$. La réponse a) ne semble donc pas convenir.

On a vu, d'après l'étude des fonctions exponentielles, que pour tout q>0 et pour tout $x \in \mathbb{R}, q^x>0$.

Donc, en particulier, pour q=0.95 et pour tout $x \in \mathbb{R}, 0.95^x > 0$.

Donc, d'après la règle des signes, comme 27>0, pour tout $x \in \mathbb{R}$, $27\times0.95^x>0$.

L'énoncé propose en réponse b : « la fonction est toujours strictement positive », ce qui est un abus de langage dont la vraie formulation devrait être « l'image de n'importe quel réel par cette fonction est toujours strictement positive » ou à la rigueur « la fonction est à valeurs strictement positives ». C'est ce que nous venons de démontrer. Donc la réponse b) est vraie.

Testons la réponse c) : est-ce que, pour tout x, l'image de x par cette fonction est inférieure à 1 ? Non, car, par exemple, l'image de 0 par cette fonction est $27 \times 0.95^{0} = 27 \times 1 = 27 > 1$.

La réponse correcte est la réponse b).

2) Une augmentation de 4 % est à traduire par une multiplication par 1,04 (en effet : $1+4\%=1+\frac{4}{100}=1,04$).

Chaque semaine, la production de jus d'orange est multipliée par 1,04.

Au jour 0, elle est de $u_0=3000$. On note u_n la production, en litres, de jus d'orange n semaines après le jour 0. (u_n) est une suite géométrique de premier terme $u_0=3000$ et de raison 1,04.

Pour tout n, on a donc $u_n = 3000 \times 1,04^n$. Si on note x au lieu de n le nombre de semaines, on peut dire qu'après x semaines, la production de jus d'orange sera, en litres, de $P(x) = 3000 \times 1,04^x$. Réponse c) Les réponses a) et b) ne conviennent pas car elles ne permettent pas de calculer un pourcentage des 3000 L pour x=1.

3) Dans cette question, on suppose que la progression de la production est exponentielle et qu'elle répond à la formule $P(x)=3000\times1,04^x$ également pour des valeurs non entières de x.

Il s'agit ici de traduire 2 semaines et 3 jours en semaines. 2 semaines et 3 jours représentent 17 jours.

17 jours représentent $\frac{17}{7}$ de semaine. $P\left(\frac{17}{7}\right) = 3000 \times 1,04^{\frac{17}{7}} \approx 3299,8$. On choisit la réponse b) : 3300 €

4) On développe et réduit les 3 expressions proposées pour savoir laquelle est égale (sous-entendu pour tout x) à $e^{2x} + 3e^x - 4$.

Testons la réponse a) : $e^{x}(e^{x}+3-4)=e^{x}\times e^{x}+e^{x}\times 3-e^{x}\times 4=e^{2x}+3e^{x}-4e^{x}=e^{2x}-e^{x}$. Ce n'est pas ça.

Testons la réponse b) : $(e^x-1)(e^x+4)=e^x\times e^x+4e^x-1e^x-4=e^{2x}+3e^x-4$. OK

Testons la réponse c) : $e^{2x+3x}-4=e^{5x}-4$. Ce n'est pas ça. La réponse correcte est la réponse b)

5) Testons chacune des expressions proposées pour voir laquelle est égale, sous-entendu pour tout réel x, à $\frac{10e^x}{1+e^x}$.

Tout d'abord, partons à la recherche d'éventuelles valeurs interdites :

 $1+e^x=0 \Leftrightarrow e^x=-1$. Or, pour tout x réel, $e^x>0$, donc $e^x\neq 1$.

Il n'y a pas de valeur interdite, l'expression $\frac{10e^x}{1+e^x}$ est définie pour tout $x \in \mathbb{R}$.

C'est aussi le cas des 3 expressions proposées : deux d'entre elles ont $1+e^x$ au dénominateur et sont donc aussi définies sur \mathbb{R} . Celle qui a $1+e^{-x}$ au dénominateur est aussi définie sur \mathbb{R} car, comme pour tout réel X, $e^X > 0$, pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$ donc $e^{-x} > 0$, donc $1 + e^{-x} \neq 0$.

Testons la réponse a) : soit $x \in \mathbb{R}$, $\frac{10}{1+e^{-x}} = \frac{10 \times e^x}{(1+e^{-x}) \times e^x}$ (on a le droit de multiplier le numérateur et le

dénominateur par e^x car on sait que c'est un nombre strictement positif, donc différent de 0)

Donc pour tout
$$x \in \mathbb{R}$$
, $\frac{10}{1+e^{-x}} = \frac{10e^x}{e^x + e^x \times e^{-x}} = \frac{10e^x}{e^x + e^0} = \frac{10e^x}{e^x + 1}$. La réponse a) convient.

Testons la réponse b):
$$10 - \frac{1}{1+e^x} = \frac{10(1+e^x)-1}{1+e^x} = \frac{10+10e^x-1}{1+e^x} = \frac{9+10e^x}{1+e^x}$$
, ne convient pas.

Testons la réponse c) : $1 - \frac{10}{1 + e^x} = \frac{1 + e^x - 10}{1 + e^x} = \frac{e^x - 9}{1 + e^x}$ ne convient pas.

La réponse correcte est la réponse a

6) Résolvons l'équation $e^{1-x^2}=1$ dans \mathbb{R} . $e^{1-x^2} = 1 \Leftrightarrow e^{1-x^2} = e^0 \Leftrightarrow 1-x^2 = 0 \Leftrightarrow 1^2 - x^2 = 0 \Leftrightarrow (1+x)(1-x) = 0 \Leftrightarrow 1+x = 0 \text{ ou } 1-x = 0$ $\Leftrightarrow x = -1 \text{ ou } 1 = x.$ $\boxed{S = \{-1; 1\}}.$

$$\Leftrightarrow x = -1 \text{ ou } 1 = x . \qquad \boxed{S = [-1;1]}.$$

L'équation admet 2 solutions dans R. La réponse correcte est la réponse a)

7) Dans cette question, on s'intéresse au signe de $f(x)=(e^x+1)(e^{-x}-1)$.

Pour tout $x \in \mathbb{R}$, $e^x > 0$, donc $e^x + 1 > 0$.

f(x), d'après la règle des signes, est donc du signe de $e^{-x}-1$.

Or, $e^{-x}-1>0 \Leftrightarrow e^{-x}>1 \Leftrightarrow e^{-x}>e^{0} \Leftrightarrow -x>0$ car la fonction exponentielle est strictement croissante sur \mathbb{R} , donc elle conserve l'ordre. Donc $e^{-x}-1>0 \Leftrightarrow x<0$ (en multipliant les deux membres par -1).

On peut donc établir le tableau de signes suivant :

	0 0181100 001 10110 1			
x	$-\infty$	0		+∞
signe de $e^{-x}-1$ et de $f(x)$	+	0	_	

Donc f(x) est positif (ou nul) pour $x \in]-\infty;0]$. La réponse correcte est la réponse a).

8) Il s'agit de résoudre l'inéquation $e^{2x-1} < e^{x^2}$ non pas dans \mathbb{R} mais dans $[0;+\infty[$ (c'est-à-dire qu'on ne garde que les solutions positives ou nulles).

 $e^{2x-1} < e^{x^2} \Leftrightarrow 2x-1 < x^2$ car la fonction exponentielle est strictement croissante donc conserve l'ordre (sur \mathbb{R} et a fortiori sur $[0;+\infty[)$.

$$e^{2x-1} < e^{x^2} \Leftrightarrow 0 < x^2 - 2x + 1 \Leftrightarrow 0 < (x-1)^2 \operatorname{car} (a-b)^2 = a^2 - 2ab + b^2$$
.

Or $(x-1)^2 \ge 0$ pour tout x, avec $(x-1)^2 = 0$ si et seulement si x-1=0 soit x=1. Tous les réels positifs sauf 1 sont donc solutions de cette inéquation dans $[0;+\infty[$. $S=[0;1[\ \cup\]1;+\infty[$.

La réponse correcte est la réponse c)

Si vous n'avez pas reconnu l'identité remarquable, vous pouviez calculer le discriminent Δ de x^2-2x+1 , vous auriez trouvé 0 et déduit le signe du trinôme (du signe de 1(coefficient de x^2) en-dehors de sa racine-double 1 où il s'annule).

9) Soit f la fonction définie sur \mathbb{R} par $f(x)=(2x-1)e^{-x}$. Calculons l'expression f'(x) de sa dérivée.

Pour tout
$$x \in \mathbb{R}$$
, $f(x)=u(x)\times v(x)$ où $u(x)=2x-1$, $u'(x)=2$, et $v(x)=e^{-x}$.

Pour dériver v, remarquons que v(x) est de la forme $e^{U(x)}$, avec U(x)=-x donc V'(x)=-1.

Comme, d'après le cours, la dérivée d'une fonction de la forme e^u est $u'e^u$, on a $v'(x)=-1\times e^{-x}=-e^{-x}$

On a donc
$$f'(x)=u'(x)\times v(x)+v'(x)\times u(x)$$
, soit $f'(x)=2e^{-x}+(-e^{-x})\times(2x-1)$.
Soit $f'(x)=2e^{-x}-(2x-1)e^{-x}=(2-(2x-1))e^{-x}=(2-2x+1)e^{-x}$, soit $f'(x)=(-2x+3)e^{-x}$.

La réponse correcte est la réponse c)

10) Soit f la fonction définie sur [-3;3] par $f(x)=10-e^{-x^2}$.

On s'intéresse à son signe et à ses variations. On peut s'aider en faisant tracer sa courbe à la calculatrice, et ainsi conjecturer que la bonne réponse est la réponse b)

Pour tester la réponse a) calculons la dérivée de f sur [-3;3]. $f(x)=10-e^{-x^2}=10-e^{u(x)}$ avec $u(x)=-x^2$ donc u'(x)=-2x. Donc $f'(x)=-u'(x)e^{u(x)}=2xe^{-x^2}$.

Comme pour tout $x \in \mathbb{R}$, $e^x > 0$, on a aussi, pour tout $x \in \mathbb{R}$, $e^{-x^2} > 0$. f'(x) est donc du signe de 2x.

r	o, on a description to the second	, · · · · · · · · · · · · · · · · ·	,	
x	-3	0		3
signe de $2x$ ou de $f'(x)$	_	0	+	
variations de f	f (-3)	0	• 3	f (3)

f admet donc un minimum et non un maximum en 0. La réponse a) ne convient pas.

Intéressons-nous maintenant au signe de f(x).

Pour tout $x \in [-3;3]$, $x^2 \ge 0$ donc $-x^2 \le 0$.

On sait que e^{x} est compris dans l'intervalle]0;1] lorsque $X \le 0$ d'après l'étude de la fonction exponentielle (au besoin, revoir sa courbe). Donc pour tout $x \in [-3;3]$, $0 < e^{-x^2} \le 1$

donc $0 > -e^{-x^2} \ge -1$ (en multipliant les 3 membres par -1) donc $10 > 10 - e^{-x^2} \ge 9$ (en ajoutant 10 aux trois membres)

Donc pour tout x de [-3;3], f(x)>0 (puisque $f(x)\ge 9$)

La fonction f est à valeurs strictement positives dans [-3;3].

La réponse correcte est donc la réponse b).