Terminale ES – Exercices de résolutions d'équations avec le logarithme népérien. Corrigés.

$$(E_2) \ \boxed{e^{x-1} = 2} \Leftrightarrow \ \ln(e^{x-1}) = \ln 2 \ (\text{M\^{e}me remarque que ci-dessus}) \Leftrightarrow \ x-1 = \ln 2 \Leftrightarrow \ x = \ln 2 + 1 \\ \boxed{S = \{\ln 2 + 1\}}$$

$$(E_3)$$
 $e^{-x}=2$ \Leftrightarrow $\ln(e^{-x})=\ln 2$ (Même remarque que ci-dessus) \Leftrightarrow $-x=\ln 2$ \Leftrightarrow $x=-\ln 2$ $S=[-\ln 2]$

$$(E_4) \ \boxed{e^{\frac{1}{x}} = 2} \Leftrightarrow \ln\left(e^{\frac{1}{x}}\right) = \ln 2 \quad \text{(Même remarque que ci-dessus)} \Leftrightarrow \frac{1}{x} = \ln 2 \quad \Leftrightarrow \quad \frac{1}{\ln 2} = x \quad \boxed{S = \left\{\frac{1}{\ln 2}\right\}}$$

$$(E_5) \quad e^x = \frac{1}{2} \iff \ln(e^x) = \ln\left(\frac{1}{2}\right) \quad \text{(Même remarque que ci-dessus)} \iff x = \ln 1 - \ln 2 \iff x = 0 - \ln 2$$

$$\iff x = -\ln 2$$

$$S = [-\ln 2]$$

$$(E_6) e^{3x} = \frac{1}{2} \Leftrightarrow \ln(e^{3x}) = \ln\left(\frac{1}{2}\right) \text{ (Même remarque que ci-dessus)} \Leftrightarrow 3x = -\ln 2 \Leftrightarrow x = \frac{-\ln 2}{3}$$

$$S = \{-\frac{\ln 2}{3}\}$$

$$(E_7) | e^x(e^x-2)=0 | \Leftrightarrow e^x=0 \text{ ou } e^x-2=0$$

Remarque : l'équation $e^x = 0$ n'a pas de solution car pour tout réel x, $e^x > 0$.

Donc $(E_7) \Leftrightarrow e^x - 2 = 0 \Leftrightarrow e^x = 2 \Leftrightarrow \ln(e^x) = \ln 2$ car les deux membres de l'équation sont strictement positifs. $(E_7) \Leftrightarrow x = \ln 2$. $S = [\ln 2]$

$$(E_8)$$
 $(e^x+3)(e^x-5)=0 \Leftrightarrow e^x+3=0 \text{ ou } e^x-5=0.$

Or, pour tout $x \in \mathbb{R}$, $e^x > 0$ donc $e^x + 3 > 3 > 0$. Donc l'équation $e^x + 3 = 0$ n'a pas de solution dans \mathbb{R} . Donc $(E_8) \Leftrightarrow e^x - 5 = 0 \Leftrightarrow e^x = 5 \Leftrightarrow \ln(e^x) = \ln 5$ (On peut composer par $\ln c$ are les deux membres sont strictement positifs), $(E_8) \Leftrightarrow x = \ln 5$.

$$(E_9) \overline{\left(e^{-x}-2\right)\!\!\left(e^{-x}\!-\!\frac{1}{2}\right)\!\!=\!0} \iff e^{-x}-2\!=\!0 \ \text{ou} \ e^{-x}\!-\!\frac{1}{2}\!=\!0 \iff e^{-x}\!=\!2 \ \text{ou} \ e^{-x}\!=\!\frac{1}{2} \,.$$

On peut composer les membres de ces deux équations par la fonction ln car tous ces membres sont strictement positifs.

$$(E_9) \Leftrightarrow \ln(e^{-x}) = \ln 2 \text{ ou } \ln(e^{-x}) = \ln\left(\frac{1}{2}\right) \Leftrightarrow -x = \ln 2 \text{ ou } -x = -\ln 2 \Leftrightarrow x = -\ln 2 \text{ ou } x = \ln 2.$$

$$\boxed{S = \{-\ln 2; \ln 2\}}$$

Or pour tout réel x, $e^{3x} > 0$ donc $e^{3x} + 1 > 1$ donc $e^{3x} + 1 \neq 0$. Donc $(E_{10}) \Leftrightarrow e^{3x} - 3 = 0 \Leftrightarrow e^{3x} = 3$. Comme les deux membres de cette équation sont strictement positifs, on peut composer par la fonction ln:

$$(E_{10}) \Leftrightarrow \ln(e^{3x}) = \ln 3 \Leftrightarrow 3x = \ln 3 \Leftrightarrow x = \frac{\ln 3}{3}.$$
 $S = \left\{\frac{\ln 3}{3}\right\}$

Autre résolution possible pour (E₁₀):

$$(E_{10})$$
 $(e^{3x}-1)^2=4$ \Leftrightarrow $e^{3x}-1=2$ ou $e^{3x}-1=-2$ \Leftrightarrow $e^{3x}=3$ ou $e^{3x}=-1$.

Pour tout $x \in \mathbb{R}$, $e^{3x} > 0$ donc $e^{3x} \neq -1$.

Donc $(E_{10}) \Leftrightarrow e^{3x} = 3 \Leftrightarrow \ln(e^{3x}) = \ln 3$ (On peut composer par ln car les deux membres sont strictement positifs), donc (E_{10}) $3x = \ln 3 \Leftrightarrow x = \frac{\ln 3}{3}$.

$$(E_{11})$$
 $e^{x^2-3}=2$ \Leftrightarrow $\ln(e^{x^2-3})=\ln 2$ (On peut composer par ln car les deux membres sont strictement positifs) (E_{11}) \Leftrightarrow $x^2-3=\ln 2$ \Leftrightarrow $x^2=\ln 2+3$ \Leftrightarrow $x=\sqrt{\ln 2+3}$ ou $x=-\sqrt{\ln 2+3}$. $S=\{-\sqrt{\ln 2+3};\sqrt{\ln 2+3}\}$

$$(E_{12})$$
 $e^{x^2-3}=-2$ $S=\emptyset$. L'équation n'a pas de solution car pour tout réel x , $e^{x^2-3}>0$, donc $e^{x^2-3}\neq -2$.

$$(E_{13})$$
 $e^{2x} - 2e^{-2x} = 1$ $\Leftrightarrow e^{2x} - \frac{2}{e^{2x}} = 1$. On pose $X = e^{2x}$ et on résout donc, pour $X > 0$, $X - \frac{2}{X} = 1$ (E'_{13}) .

$$(E'_{13}) \Leftrightarrow X-1-\frac{2}{X}=0 \Leftrightarrow \frac{X^2-X-2}{X}=0.$$

Considérons le trinôme X^2-X-2 . $\Delta=1^2-4\times1\times(-2)=1+8=9=3^2$.

Donc ce trinôme a deux racines : $X_1 = \frac{-(-1)-3}{2} = -1$ et $X_2 = \frac{-(-1)+3}{2} = 2$.

Seule X₂ est strictement positive.

Donc
$$(E_{13}) \Leftrightarrow e^{2x} = 2 \Leftrightarrow \ln(e^{2x}) = \ln 2 \Leftrightarrow 2x = \ln 2 \Leftrightarrow x = \frac{\ln 2}{2}$$
.

$$(E_{14}) \ (e^x - 1)^2 = 1 \iff (e^x - 1)^2 - 1^2 = 0 \iff (e^x - 1 - 1)(e^x - 1 + 1) = 0 \iff (e^x - 2)e^x = 0$$

$$(E_{14}) \Leftrightarrow e^x - 2 = 0$$
 ou $e^x = 0 \Leftrightarrow e^x - 2 = 0$ car pour tout réel x , $e^x > 0$ donc $e^x \neq 0$.

$$(E_{14}) \Leftrightarrow e^x = 2 \Leftrightarrow \ln(e^x) = \ln 2 \Leftrightarrow x = \ln 2.$$
 $S = \{\ln 2\}$

On peut aussi résoudre comme suit : $(E_{14}) \Leftrightarrow e^x - 1 = \sqrt{1}$ ou $e^x - 1 = -\sqrt{1}$...

Exercice 2: a) (E)
$$5x^2 - 13x - 6 = 0$$
 $\Delta = (-13)^2 - 4 \times 5 \times (-6) = 169 + 120 = 289 = 17^2$ (E) a deux solutions dans \mathbb{R} : $x_1 = \frac{13 - 17}{10} = -0.4$ et $x_2 = \frac{13 + 17}{10} = 3$. $S = [-0.4; 3]$.

b) (E')
$$5e^{4x}-13e^{2x}-6=0$$
. En posant $X=e^{2x}$, l'équation (E') s'écrit $5X^2-13X-6=0$. (Petite précision si besoin : $e^{4x}=(e^{2x})^2$)

On sait que cette dernière équation a deux solutions dans $\mathbb{R}: -0.4$ et 3.

Or il ne s'agit pas de la résoudre dans \mathbb{R} mais dans \mathbb{R}^{+*} , car pour tout x de \mathbb{R} , $e^{2x} > 0$.

On ne garde donc que la solution X=3.

On résout donc
$$e^{2x} = 3 \Leftrightarrow \ln(e^{2x}) = \ln 3 \Leftrightarrow 2x = \ln 3 \Leftrightarrow x = \frac{\ln 3}{2}$$
.

$$S = \left\{ \frac{\ln 3}{2} \right\}.$$

Exercice 3:
$$(E_1)$$
 $\ln(1+3x)=\ln(x+1)$

(E₁) est définie pour
$$1+3x>0$$
 et $x+1>0 \Leftrightarrow 3x>-1$ et $x>-1 \Leftrightarrow x>-\frac{1}{3}$ et $x>-1 \Leftrightarrow x>-\frac{1}{3}$ car $-\frac{1}{3}>-1$. On résout donc (E₁) dans $\left[-\frac{1}{3};+\infty\right[$.

$$(E_1) \Leftrightarrow 1+3x=x+1 \Leftrightarrow 2x=0 \Leftrightarrow x=0$$
. Comme $0 \in \left[-\frac{1}{3};+\infty\right[, S=[0]]$.

(E₂)
$$\ln(2x+1) = \ln(x^2-1)$$
. (E₂) est définie lorsque $2x+1>0$ et $x^2-1>0$.

$$2x+1>0 \Leftrightarrow 2x>-1 \Leftrightarrow x>-\frac{1}{2} \Leftrightarrow x \in \left[-\frac{1}{2};+\infty\right[.$$

 $x^2-1=(x+1)(x-1)$

x	$-\infty$		-1		1		+∞
x+1		_	0	+		+	
x-1		_		_	0	+	
$x^2 - 1$		+	0	_	0	+	

$$x^2-1>0 \Leftrightarrow x \in]-\infty;-1[\cup]1;+\infty[.$$

$$(\]-\infty\,;-1[\ \cup\]1\,;+\infty[\)\cap\ \left]-\frac{1}{2}\,;+\infty\right[\ =\boxed{\]1\,;+\infty[\]}$$

On résout donc l'équation (E_2) dans $]1;+\infty[$

$$\begin{array}{lll} (\mathrm{E}_2) & \ln(2\,x+1) = \ln(\,x^2-1) \iff 2\,x+1 = x^2-1 \iff 0 = x^2-2\,x-2\;. \\ \Delta = (-2)^2 - 4 \times 1 \times (-2) = 4 + 8 = 12 = (2\,\sqrt{3})^2 \end{array}$$

Le trinôme $x^2 - 2x - 2$ admet donc deux racines dans \mathbb{R} : $x_1 = \frac{2 - 2\sqrt{2}}{3} = 1 - \sqrt{3}$ et $x_2 = \frac{2 + 2\sqrt{3}}{2} = 1 + \sqrt{3}$.

Mais
$$1-\sqrt{3} \notin]1;+\infty[$$
, donc $S=[1+\sqrt{3}]$.

$$(E_3)$$
 $\ln(x-3)-1=0$. (E_3) est définie pour $x-3>0 \Leftrightarrow x>3 \Leftrightarrow x \in [3;+\infty[]$.

On résout donc (E_3) dans $]3;+\infty[$.

$$(E_3) \Leftrightarrow \ln(x-3)=1 \Leftrightarrow e^{\ln(x-3)}=e^1 \Leftrightarrow x-3=e \Leftrightarrow x=e+3.$$

$$e>0$$
 donc $e+3>3$ donc $e+3 \in]3;+\infty[$. Donc $S=\{e+3\}$

$$(\mathrm{E_4}) \ \boxed{\ln(x) + \ln(x-1) = 0} \quad (\mathrm{E_4}) \ \text{est d\'efinie pour } x > 0 \ \text{et} \ x - 1 > 0 \ \Leftrightarrow \ x > 0 \ \text{et} \ x > 1 \ \text{soit pour} \ x > 1 \ .$$

On résout donc
$$(E_4)$$
 dans $\boxed{]1;+\infty[}$. $(E_4) \Leftrightarrow \ln(x(x-1))=0 \Leftrightarrow \ln(x(x-1))=\ln 1 \Leftrightarrow x(x-1)=1$. $(E_4) \Leftrightarrow x^2-x-1=0$. $\Delta=(-1)^2-4\times1\times(-1)=5$.

Le trinôme
$$x^2-x-1$$
 admet donc deux racines dans \mathbb{R} : $x_1=\frac{1-\sqrt{5}}{2}$ et $x_2=\frac{1+\sqrt{5}}{2}$.

Seul
$$x_2$$
 est dans]1;+ ∞ [. Donc $S = \left\{ \frac{1+\sqrt{5}}{2} \right\}$

$$(E_5)$$
 $\ln(4-x)=0$ (E_5) est définie pour $4-x>0 \Leftrightarrow 4>x \Leftrightarrow x \in]-\infty;4[$.

On résout donc
$$(E_5)$$
 dans $]-\infty;4[]$. $(E_5) \Leftrightarrow \ln(4-x)=\ln 1 \Leftrightarrow 4-x=1 \Leftrightarrow 3=x$.

$$3 \in]-\infty; 4[, donc S=[3]]$$

$$(E_6) \ln(x) - \ln(1-x) = \ln(2)$$

 (E_6) est définie pour x>0 et 1-x>0, soit pour x>0 et 1>x. Donc (E_6) est définie pour $x\in [0,1]$.

On résout (E_6) dans $\boxed{]0;1[}$

$$(E_6) \Leftrightarrow \ln(x) - \ln(1-x) - \ln 2 = 0 \Leftrightarrow \ln \frac{x}{2(1-x)} = 0 \Leftrightarrow \ln \frac{x}{2(1-x)} = \ln 1 \Leftrightarrow \frac{x}{2(1-x)} = 1$$

(On remarque que si $x \in]0;1[$, nécessairement $1-x \neq 0$)

$$(E_6) \Leftrightarrow x=2(1-x) \Leftrightarrow x=2-2x \Leftrightarrow 3x=2 \Leftrightarrow x=\frac{2}{3}$$
. Comme $\frac{2}{3} \in]0;1[,]$ $S=\left\{\frac{2}{3}\right\}$.

(E₇)
$$\ln(2x+1)+\ln(x-3)=\ln(x+5)$$

$$(E_7)$$
 est définie pour $2x+1>0$ et $x-3>0$ et $x+5>0$

Soit pour 2x > -1 et x > 3 et x > -5, soit pour $x > -\frac{1}{2}$ et x > 3 et x > -5, donc pour $x \in]3; +\infty[$.

On résout (E_7) dans $3;+\infty[$

$$(E_7) \Leftrightarrow \ln((2x+1)(x-3)) = \ln(x+5) \Leftrightarrow (2x+1)(x-3) = x+5 \Leftrightarrow 2x^2 - 6x + x - 3 = x + 5$$

$$(E_7) \Leftrightarrow 2x^2 - 6x - 8 = 0 \Leftrightarrow x^2 - 3x - 4 = 0.$$
 $\Delta = (-3)^2 - 4 \times 1 \times (-4) = 9 + 16 = 25 = 5^2$

Le trinôme x^2-3x-4 admet donc deux racines dans \mathbb{R} : $x_1=\frac{3-5}{2}=-1$ et $x_2=\frac{3+5}{2}=4$.

Seule x_2 est dans $]3;+\infty[$, donc S=[4]

(E₈)
$$\boxed{\ln(x-1) + \ln(2-x) = \ln(6x)}$$
 (E₈) est définie pour $x-1>0$ et $2-x>0$ et $6x>0$
Soit pour $x>1$ et $2>x$ et $x>0$, soit pour $x\in]1;2[$.

On résout
$$(E_8)$$
 dans $]1;2[$.

$$(E_8) \Leftrightarrow \ln[(x-1)(2-x)] = \ln(6x) \Leftrightarrow (x-1)(2-x) = 6x \Leftrightarrow 2x-x^2-2+x=6x \Leftrightarrow 0=x^2+3x+2$$

 $\Delta = 3^2 - 4 \times 1 \times 2 = 9 - 8 = 1 = 1^2$.

Le trinôme $x^2 + 3x + 2$ admet donc deux racines : $x_1 = \frac{-3 - 1}{2} = -2$ et $x_2 = \frac{-3 + 1}{2} = -1$.

Mais ni -2, ni -1 n'appartiennent à l'intervalle]1;2[. Donc l'équation (E₈) n'a pas de solution. $S = \emptyset$.

Exercise 4: 1)
$$x^2 - 2x - 3 = 0$$
 $\Delta = (-2)^2 - 4 \times 1 \times (-3) = 4 + 12 = 16 = 4^2$.

L'équation
$$x^2 - 2x - 3 = 0$$
 admet donc deux solutions : $x_1 = \frac{2 - 4}{2} = -1$ et $x_2 = \frac{2 + 4}{2} = 3$. $S = [-1;3]$

a) L'équation
$$\ln(x-2) + \ln x = \ln 3$$
 n'est définie que pour $x-2>0$ et $x>0$, soit $x>2$ et $x>1$, soit $x>2$. Donc $x>0$ ne peut pas être solution de cette équation.

3 l'est-elle ? Calculons $\ln(3-2) + \ln 3 = \ln 1 + \ln 3 = 0 + \ln 3 = \ln 3$.

3 est solution de l'équation $\ln(x-2) + \ln x = \ln 3$.

b) L'équation
$$\ln[x(x-2)] = \ln 3$$
 est définie pour $x(x-2) > 0$.

х	$-\infty$		0		2		+∞
X		_	0	+		+	
x-2		_		_	0	+	
x(x-2)		+	0	_	0	+	

L'équation $\ln[x(x-2)] = \ln 3$ est donc définie pour $x \in]-\infty; 0[\cup]2; +\infty[$. -1 et 3 appartiennent à cet ensemble.

$$\ln(-1(-1-2)) = \ln(-1 \times (-3)) = \ln 3$$
. Donc -1 est solution de l'équation $\ln[x(x-2)] = \ln 3$. $\ln(3 \times (3-2)) = \ln(3 \times 1) = \ln 3$. Donc 3 est solution de l'équation $\ln[x(x-2)] = \ln 3$.

-1 et 3 sont tous deux solution de l'équation $\ln[x(x-2)]=\ln 3$.

Exercice 5:
$$(E_1)$$
 $\ln(x+3) + \ln(x+2) = \ln(x+11)$

 (E_1) est définie pour x+3>0 et x+2>0 et x+11>0, soit pour x>-3 et x>-2 et x>-11, soit pour x>-2. (E_1) est définie sur $]-2;+\infty[$. On résout donc (E_1) dans $]-2;+\infty[$:

$$(E_1) \Leftrightarrow \ln[(x+3)(x+2)] = \ln(x+11) \Leftrightarrow (x+3)(x+2) = x+11 \Leftrightarrow x^2+5x+6=x+11$$

 $(E_1) \Leftrightarrow x^2+4x-5=0$. $\Delta = 4^2-4\times1\times(-5) = 16+20=36=6^2$

Le trinôme x^2+4x-5 admet donc deux racines dans \mathbb{R} : $x_1 = \frac{-4-6}{2} = -5$ et $x_2 = \frac{-4+6}{2} = 1$.

Seule 1 appartient à l'intervalle $]-2;+\infty[$, donc S=[1].

$$(E'_1)$$
 $\ln(x^2+5x+6)=\ln(x+11)$. Cette équation est définie lorsque $x^2+5x+6>0$ et lorsque $x>-11$.

Résolvons l'inéquation $x^2+5x+6>0$. $\Delta=5^2-4\times1\times6=25-24=1=1^2$

Le trinôme $x^2 + 5x + 6$ admet donc deux racines : $x_3 = \frac{-5 - 1}{2} = -3$ et $x_4 = \frac{-5 + 1}{2} = -2$.

Le coefficient de x^2 dans ce trinôme étant 1>0, on a le tableau de signes suivant :

X	$-\infty$	-3		-2		$+\infty$
$x^2 + 5x + 6$	+	0	_	0	+	

L'ensemble de définition de l'équation (E'_1) est donc $]-11;+\infty[\cap(]-\infty;-3[\cup]-2;+\infty[$), c'est-à-dire $]-11;-3[\cup]-2;+\infty[$.

On résout
$$(E'_1)$$
 dans $\boxed{]-11;-3[\,\cup\,]-2;+\infty[}$: $(E'_1) \Leftrightarrow x^2+5x+6=x+11 \Leftrightarrow x^2+4x-5=0 \Leftrightarrow x=-5 \text{ ou } x=1$. (Voir résolution de (E_1))

Ici, on peut garder les deux racines, -5 et 1, car elles appartiennent toutes deux à l'ensemble de résolution $]-11;-3[\ \cup\]-2;+\infty[$. S=[-5;1].

Exercice 6: 1)
$$2x^2+3x-2=0$$
. $\Delta=3^2-4\times2\times(-2)=9+16=25=5^2$.

L'équation
$$2x^3 + 3x - 2 = 0$$
 a deux solutions dans \mathbb{R} : $x_1 = \frac{-3 - 5}{4} = -2$ et $x_2 = \frac{-3 + 5}{4} = \frac{1}{2}$. $S = \left\{-2; \frac{1}{2}\right\}$

2)
$$(E_2)$$
 $2(\ln x)^2 + 3\ln x - 2 = 0$.

En posant $X = \ln x$, résoudre (E_2) (dans $]0; +\infty[$) revient à résoudre (E_2) $2X^2 + 3X - 2 = 0$ dans \mathbb{R} . (Car lorsque x parcourt $]0;+\infty[$, $\ln x$ parcourt \mathbb{R})

Or on a vu au 1) que (E'_2) admet deux solutions : X = -2 et $X = \frac{1}{2}$.

Résoudre (E₂) revient donc à résoudre dans $]0;+\infty[$ $\ln x=-2$ ou $\ln x=\frac{1}{2}$.

$$\ln x = -2 \iff e^{\ln x} = e^{-2} \iff x = e^{-2}$$

$$\ln x = \frac{1}{2} \iff e^{\ln x} = e^{\frac{1}{2}} \iff x = e^{\frac{1}{2}}$$

Ces deux valeurs sont bien dans $]0;+\infty[$, donc l'ensemble des solutions de (E_2) est $S=\left\{e^{-2};e^{\frac{1}{2}}\right\}$

Exercice 7: (E_1) $\ln(x^2) = (\ln x)^2$ On résout dans $]0; +\infty[$. $(E_1) \Leftrightarrow 2\ln(x) = (\ln x)^2$.

En posant $X = \ln x$, résoudre (E_1) dans $]0; +\infty[$ revient à résoudre $2X = X^2$ dans \mathbb{R} (Car lorsque x parcourt $]0;+\infty[$, $\ln x$ parcourt \mathbb{R})

$$2X=X^2 \Leftrightarrow 0=X^2-2X \Leftrightarrow 0=X(X-2) \Leftrightarrow X=0 \text{ ou } X-2=0 \Leftrightarrow X=0 \text{ ou } X=2.$$

$$2X=X^{2} \Leftrightarrow 0=X^{2}-2X \Leftrightarrow 0=X(X-2) \Leftrightarrow X=0 \text{ ou } X-2=0 \Leftrightarrow X=0 \text{ ou } X=2.$$

$$\text{Donc } (E_{1}) \Leftrightarrow \ln x=0 \text{ ou } \ln x=2 \Leftrightarrow e^{\ln x}=e^{0} \text{ ou } e^{\ln x}=e^{2} \Leftrightarrow x=1 \text{ ou } x=e^{2}.$$

$$S=\{1;e^{2}\}$$

 (E_2) | $e^{2x} - 2e^x = 0$ | On pose $X = e^x$. Résoudre (E_2) dans | R revient à résoudre $X^2 - 2X = 0$ dans $]0; +\infty[$, car lorsque x parcourt \mathbb{R} , e^x parcourt $0; +\infty[$.

On a vu que, dans \mathbb{R} , $X^2 - 2X = 0 \Leftrightarrow X = 0$ ou X = 2. 0 n'appartient pas à $]0;+\infty[$. Donc on garde seulement la solution X=2 .

On a donc $(E_2) \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln 2$.

$$S = \{\ln 2\}$$

$$(S_1) \Leftrightarrow \begin{cases} X=1+Y \\ Y=4 \end{cases} \Leftrightarrow \begin{cases} X=5 \\ Y=4 \end{cases} . \quad S=[(5;4)]$$

$$\begin{pmatrix} \mathbf{S'}_1 \end{pmatrix} \begin{vmatrix} 2\mathbf{e}^x - 3\mathbf{e}^y = 3 \\ 3\mathbf{e}^x - 2\mathbf{e}^y = 7 \end{vmatrix} \qquad \Leftrightarrow \begin{cases} \mathbf{e}^x = 5 \\ \mathbf{e}^y = 4 \end{cases} \Leftrightarrow \begin{cases} x = \ln 5 \\ y = \ln 4 \end{cases}$$

$$S = \{\ln 5; \ln 4\}$$
 ou $S = \{\ln 5; 2 \ln 5\}$

$$(S_2) \begin{bmatrix} 2X = Y + 1 \\ 3X + 3 = 2Y \end{bmatrix} \Leftrightarrow \begin{cases} 2X - 1 = Y \\ 3X + 3 = 2(2X - 1) \end{cases} \Leftrightarrow \begin{cases} Y = 2X - 1 \\ 3X + 3 = 4X - 2 \end{cases} \Leftrightarrow \begin{cases} Y = 2X - 1 \\ 5 = X \end{cases} \Leftrightarrow \begin{cases} Y = 9 \\ X = 5 \end{cases}$$

$$\begin{pmatrix}
S'_{2}
\end{pmatrix}
\begin{bmatrix}
2e^{-x} = e^{y} + 1 \\
3e^{-x} + 3 = 2e^{y}
\end{pmatrix}
\Leftrightarrow
\begin{bmatrix}
e^{-x} = 5 \\
e^{y} = 9
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
-x = \ln 5 \\
y = \ln 9
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
x = -\ln 5 \\
y = 2\ln 3
\end{bmatrix}$$

$$S = [(-\ln 5; 2\ln 3)]$$

$$(S_3) \begin{cases} \ln x + \ln 4 = \ln 3 - \ln y \\ e^x = e^{2-y} \end{cases} \Leftrightarrow \begin{cases} \ln(4x) = \ln\left(\frac{3}{y}\right) \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} 4(2-y) = \frac{3}{y} \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} 4y(2-y) = 3 \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} 8y - 4y^2 = 3 \\ x = 2 - y \end{cases}$$

(on résout pour
$$x > 0$$
 et $y > 0$) $8y - 4y^2 = 3 \Leftrightarrow 0 = 4y^2 - 8y + 3 \Leftrightarrow y = \frac{3}{2}$ ou $y = \frac{1}{2}$. Si $y = \frac{3}{2}$, $x = \frac{1}{2}$

et si
$$x = \frac{1}{2}$$
, $y = \frac{3}{2}$. Dans les deux cas, on a bien $x > 0$ et $y > 2$. Donc $S = \left\{ \left(\frac{1}{2}; \frac{3}{2}\right); \left(\frac{3}{2}; \frac{1}{2}\right) \right\}$.